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Abstract

A new approximate formula for temperature integral is proposed. The linear dependence of
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d∫ on x has been established. Combining this linear dependence and integration-by-parts,

new equation for the evaluation of kinetic parameters has been obtained from theabove dependence,

which can be put in the form

ln G ln
100198882 187391198

( )

( . . )

α
βT

AR

E RT2







=
+









 − E

RT

The validity of this equation has been tested with data from numerical calculating. And its de-

viation from the values calculated by Simpson’s numerical integrating was discussed. Compared

with several published approximate formulae, this new one is much superior to all other approxima-

tions and is the most suitable solution for the evaluation of kinetic parameters from TG experiments.
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Introduction

Thermal analysis, especially modern thermogravimetric analysis (TG), provides a
quantitative understanding of non-isothermal solid decomposition under controlled
laboratory conditions, for the development of modern thermal analysis techniques.
Consequently, the validity of TG data for kinetic analysis of non-isothermal solid de-
composition is enhanced greatly. In the most TG studies the temperature of samples
increases linearly. Knowledge of kinetic parameters, such as kinetic model, activa-
tion energy, and the pre-exponential factor, can be obtained through various TG data
treating methods [1–5]. Integral method is one of basic approaches to analysis of
non-isothermal TG data. For its many inherent advantages, integral method has been
used widely. Unfortunately, this method involves in an integration of Arrhenius func-
tion, also called ‘temperature integral’ as shown below, which cannot be analytically
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integrated. A large number of solutions for this question, with varying complexity
and precision, have been presented. In 1964 Coats and Redfern [6] provided a widely
used integral approximate formula. Gorbachev–Lee–Beck [7, 8] proposed a two-term
approximation, which is considered simple and more precise than Coats–Redfern
equation. Li Chung-Hsiung [9] and Agrawal [10] proposed two three-term approxi-
mate formulae, which are precise but more complex. Senum and Yang [11] put for-
ward a series of multi-order rational approximations with the degree of the polyno-
mial in the denominator from 1 to 4, and Perez-Maqueda et al. [12] further proposed
rational approximations, some of which have high accuracy but horrendous compli-
cated. Urbanovici et al. [13] presented an improved version of the Coats–Redfern
method of evaluating non-isothermal kinetic parameters. A number of different ap-
proaches have been proposed in the literature during the last century as can be found
in excellent reviews of Flynn [14]. How to evaluate an integral of the Arrhenius func-
tion had been reviewed recently [15]. And if an approximation method of tempera-
ture integral is both simple and accurate enough in the range of its applicability, the
sophisticated approximation of temperature integral, which requires the use of te-
dious non-linear optimization for calculating the kinetic parameters, is not necessary
[16]. It seems to be of great interests to find out a suitable approximation for tempera-
ture integral. The aims of this paper is to present a better approximation of tempera-
ture integral, which is simple, precise and reliable.

Theory

It is usually assumed that the basic kinetic equation for solid state decomposition pro-

cess under non-isotheral conditions can be expressed as a function of the fractional

conversion α (0<α<1) in the following form:
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where A is the pre-exponential factor of the Arrhenius type rate constant, and E the

apparent activation energy, β heating rate, and f(α) a function depending on reaction

mechanism.

Rearranging Eq. (1) and integrating both sides of the equation the following ex-

pression is obtained.
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The right side of Eq. (2) cannot be analytically integrated, but can be integrated

by parts to obtain the expression showed in Eq. (3).
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Rearrangement of Eq. (3) gives Eq. (4):
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where x=RT/E, u=E/RT. Dividing both sides of Eq. (5) by e
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Rearranging Eq. (6), we get
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Main of thermal decomposition reactions takes place in the range of 15≤u≤55, i.e.,

1/55≤x≤1/15. In this range, Simpson’s procedure is used to evaluate numerical integral

values for various u at interval of 1. A close examination of Eq. (7) shows that k(x) varies

linearly with x in the range 1/55≤x≤1/15. Plotting k(x) vs. x is shown in Fig. 1. The values

of intercept, slope and regression coefficient for linear plot of k(x) vs. x are 0.00099441,

0.93695599 and 0.99995584, respectively. And the expression of k(x) is

k(x)=0.00099441+0.93695599x (9)

Combining Eq. (8) and Eq. (9), a new approximation equation for temperature

integral is obtained
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Inserting Eq. (10) into Eq. (2), and logarithm on both sides of Eq. (2), we get
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Results and discussion

The objective of this analysis is to compare the proposed method with several known

integral approximate methods in order to determine its range of applicability in kinetic

studies. All numerical values were computed and plotted on a PC by a MATLAB pro-

gram. The expressions of Coats–Redfern equation, Gorbachev–Lee–Beck equation,

Li Chung-Hsiung equation, Agrawal equations, which are introduced for comparison,

are shown in Table 1. The deviation from Simpson’s procedure of Arrhenius integral
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Fig. 1 Linear fitting of k(x) vs. x (1/u)

Table 1 Expressions for some proposed rational approximations for Arrhenius integral
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for these approximate formulae at various u is shown in Table 2, respectively. The rela-

tive percent error associated with the use of above approximations as solution of the

Arrhenius integral for a physically realistic domain of u are plotted in Fig. 2 along with

the error for the present result, Eq. (10). The range of u and their corresponding

precisions are shown in Table 3.

As shown in Fig. 2, hard line represents the ‘exact’ values of temperature inte-

gral used for the error calculation was obtained by double precision numerical inte-

gration of Arrhenius integral using the Simpson’s procedure with a step size of 1 for

u. Similar plots are drawn for other equations. Figure 2 shows that Eq. (10) is signifi-

cantly more accurate than either Coats–Redfern method or Gorbachev–Lee–Beck
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Table 2 Percentage deviation from Simpson’s procedure for some approximate formula at vari-
ous u

u Li Chung-
Hsiung

Agrawal
Gorbachev–
Lee–Beck

Coats–
Redfern

Eq. (10)

5 6.7656 1.4273 –3.4025 –18.8581 – 1.7727

10 0.8768 –0.1851 –1.2248 –5.1758 – 0.3428

15 0.2786 –0.1772 –0.6289 –2.3955 – 0.0631

20 0.1231 –0.1303 –0.3825 –1.3787 0.0098

25 0.0651 –0.0963 –0.2572 –0.8955 0.0257

30 0.0386 –0.0732 –0.1847 –0.6284 0.0229

35 0.0247 –0.0573 –0.1391 –0.4652 0.0135

40 0.0168 –0.0459 –0.1085 –0.3583 0.0023

45 0.0119 –0.0376 –0.0871 –0.2844 – 0.0092

50 0.0088 –0.0313 –0.0714 –0.2313 – 0.0201

55 0.0066 –0.0265 –0.0596 –0.1917 – 0.0303

60 0.0051 –0.0227 –0.0505 –0.1615 – 0.0396

65 0.0041 –0.0196 –0.0433 –0.1379 – 0.0481

70 0.0033 –0.0172 –0.0376 –0.1192 – 0.0558

Table 3 Typical percentage deviation of various approximate equations from Simpson’s proce-
dure of temperature integral

Approximate equation

Range of u

Deviation from Simpson’s procedure/%

<0.1 <1.0 <2.0

Li Chung-Hsiung ≥22 ≥10 ≥8

Agrawal ≥25 ≥6 ≥5

Gorbachev–Lee–Beck ≥42 ≥12 ≥8

Coats–Redfern – ≥24 ≥17

Equation (10) ≥14 ≥7 ≥5



method in all the range of u, as a solution of Arrhenius integral. Furthermore, Eq. (10)

is better than Li Chung-Hsiung method and Agrawal method in the main range u≥12.

In the low range 5≤u≤11, Eq. (10) is better than Li Chung-Hsiung method and the ra-

tio of deviation lower than 2%. And this new equation is more simple than the two

latter. Equation (10) under-predicts the true value of the Arrhenius integral by less

than 0.1% over the domain u≥14 most normally encountered in experimental studies.

Accurate approximation is the most favorable characteristic for the newly devel-

oped approximation formulae [14]. Equation (10) remains the simplicity of

Coats–Redfern method and Gorbachev–Lee–Beck method in calculation and forma-

tion. And its accuracy is better than Li Chung-Hsiung method and Agrawal method.

So it has both simplicity and accuracy. Although Eq. (10) is derived in the range of

15≤u≤55, it has high precision in the range 5≤u≤70, in which most of thermal decom-

positions take place. Furthermore, Eq. (10) is directly derived from numerical tem-

perature integral, so it is reliable.

The program mentioned above is also available in MATLAB 5.3 language,

which is a powerful software for numerical calculation and symbol calculation. The

precision of numerical calculation performed was higher than 10–11% [17].

Conclusions

• It is found that
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varies linearly with x in the range 1/55≤x≤1/15. Com-

bining this linear correlation and integration-by-parts, a new approximation for

temperature integral has been proposed.
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Fig. 2 Comparison of various approximate methods at different values of u. Related
data are given in Table 2



• The validity of Eq. (10) has been tested with data from a numerical calculation.

Equation (10) gives values close to the theoretical values of temperature integral.

Meanwhile Eq. (10) gives more accurate values than those from other approxima-

tions compared by the numerical analysis. The results showed that Eq. (10) is an

ideal choice for temperature integral. It can be concluded that this newly proposed

approximation leads to reasonably good results.

• Because of its simplicity, reliability and high accuracy, Eq. (10) may be commonly

used as integral methods of thermal analysis.

• The results also confirmed the plausibility of the used mathematical approach for

the derivation of Eq. (10).
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